首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70267篇
  免费   6325篇
  国内免费   5188篇
化学   48639篇
晶体学   960篇
力学   649篇
综合类   698篇
数学   6541篇
物理学   24293篇
  2023年   738篇
  2022年   1113篇
  2021年   2212篇
  2020年   2001篇
  2019年   1954篇
  2018年   1563篇
  2017年   1695篇
  2016年   2541篇
  2015年   2435篇
  2014年   2786篇
  2013年   5264篇
  2012年   3726篇
  2011年   3965篇
  2010年   3474篇
  2009年   4414篇
  2008年   4452篇
  2007年   4838篇
  2006年   4039篇
  2005年   3015篇
  2004年   2693篇
  2003年   2444篇
  2002年   4571篇
  2001年   1673篇
  2000年   1312篇
  1999年   1094篇
  1998年   955篇
  1997年   869篇
  1996年   899篇
  1995年   838篇
  1994年   751篇
  1993年   741篇
  1992年   692篇
  1991年   467篇
  1990年   382篇
  1989年   300篇
  1988年   370篇
  1987年   262篇
  1986年   265篇
  1985年   385篇
  1984年   285篇
  1983年   155篇
  1982年   321篇
  1981年   504篇
  1980年   447篇
  1979年   476篇
  1978年   381篇
  1977年   281篇
  1976年   246篇
  1974年   81篇
  1973年   163篇
排序方式: 共有10000条查询结果,搜索用时 22 毫秒
11.
Herein, we report a Mott-Schottky catalyst by entrapping cobalt nanoparticles inside the N-doped graphene shell (Co@NC). The Co@NC delivered excellent oxygen evolution activity with an overpotential of merely 248 mV at a current density of 10 mA cm–2 with promising long-term stability. The importance of Co encapsulated in NC has further been demonstrated by synthesizing Co nanoparticles without NC shell. The synergy between the hexagonal close-packed (hcp) and face-centered cubic (fcc) Co plays a major role to improve the OER activity, whereas the NC shell optimizes the electronic structure, improves the electron conductivity, and offers a large number of active sites in Co@NC. The density functional theory calculations have revealed that the hcp Co has a dominant role in the surface reaction of electrocatalytic oxygen evolution, whereas the fcc phase induces the built-in electric field at the interfaces with N-doped graphene to accelerate the H+ ion transport.  相似文献   
12.
Inspired by the intriguing structures and remarkable activities of sesquiterpenoid dimers,12 new sesquiterpenoid dimers,artematrovirenolides A—D(1—4)and artematrolides S—Z(8—12),were isolated from the EtOAc fraction of Artemisia atrovirens through a bioactivity-guided approach.Their structures were elucidated by comprehensive spectroscopic data and absolute configuration was assigned based on single crystal X-ray diffraction data and ECD calculations.Structurally,all compounds are presumably formed via[4+2]cycloaddition involving three connecting model.Compounds 1—4 are four novel hetero-dimeric[4+2]Diels-Alder adducts dimerized from a rotundane-type unit and a guaiane-type monomer,and compounds 5—12 are eight new homo-dimeric[4+2]adducts derived from two guaianolide moieties.A putative biosynthetic pathway for compounds 1—4 was also proposed.Compounds 4,6,7,and 10 demonstrated moderate cytotoxicity against HepG2,SMMC-7721,and Huh7 cell lines with IC50 values ranging from 9.3 to 62.3μmol/L.Interestingly,compounds 5 and 11 manifested cytotoxicity with IC50 values of 13.6 and 12.8(HepG2),18.5 and 13.1(SMMC-7721),and 16.5 and 19.4μmol/L(Huh7),respectively,which were equivalent to the positive control,sorafenib.This investigation suggests that compounds 5 and 11 might be considered as potent antihepatoma candidates and deserve further structural modification and mechanism study.  相似文献   
13.
In the present study, novel representatives of the important group of biologically-active, dehydroabietic acid-bearing dithiocarbamate moiety, were synthesized and characterized by 1H NMR, 13C NMR, HR-MS. The in vitro antiproliferative activity evaluation (MTT) indicated that these compounds exhibited potent inhibitory activities in various cancer cell lines (HepG-2, MCF-7, HeLa, T-24, MGC-803). Particularly, compound III-b possessed extraordinary cytotoxicity with low micromolar IC50 values ranging from 4.07 to 38.84 µM against tested cancer cell lines, while displayed weak cytotoxicity on two normal cell lines (LO-2 and HEK 293 T). Subsequently, the potential mechanisms of representative compound III-b were elementarily investigated by Transwell experiment, which showed III-b can inhibit cancer cells migration. Annexin-V/PI dual staining showed that the compound can induce HepG-2 cells apoptosis in a dose-dependent manner. Meanwhile this apoptosis may be related to the upregulated protein expression of cleaved-caspase 3, cleaved-caspase 9, Bax and downregulated of Bcl-2 indicated by Western Blot. Later study further confirmed that ROS levels in HepG-2 cells increased significantly with the rise of concentrations. In addition, through the network pharmacology data analyzing, the core targets and signaling pathways of compound III-b for treatment of liver neoplasms were forecasted. Molecular docking model showed that compound III-b had high affinity with hub targets (CASP3, EGFR, HSP90AA1, MAPK1, ERBB2, MDM2), suggesting that compound III-b might target the hub protein to modulate signaling activity. Taken together, these data indicated that dehydroabietic acid structural modification following the “Molecular hybridization” principle is a feasible way to discover the potential multi-targeted antitumor compounds.  相似文献   
14.
We demonstrate a novel impedimetric approach providing unprecedented insight into characteristic properties of dielectric thin films covering electrode surfaces. The concept is based on the joint interpretation of electrochemical impedance spectroscopy (EIS) together with dielectrometry (DEM) whose informative value is mutually interconnected. The advantage lies in the synergistic compensation of individual shortcomings adversely affecting conventional impedimetric analysis strategies relying exclusively on either DEM or the traditional EIS approach, which in turn allows a reliable determination of thickness and permittivity values. The versatility of the method proposed is showcased by an in-situ growth-monitoring of a nanoporous, crystalline thin film (HKUST-1) on an interdigitated electrode geometry.  相似文献   
15.
By using angle resolved photoemission spectroscopy, we investigate the electronic structures of Pt-skin layer of Pt–Co and Pt–Ni alloys with CO molecules on the surface. Measured Fermi surface maps and band dispersions reflect the signatures of chemical bonding between Pt-skin layer and CO molecules. Furthermore, the degree of chemical bonding strength of CO molecules, estimated from the energy shift of the participating bands, is found to be reduced on both Pt bimetallic alloys. Our results show how the surface band structure of Pt bimetallic alloys is modified with molecular orbitals of CO molecules on the surface, revealing the important role of the electronic structure in the determination of chemical properties of bimetallic alloys.  相似文献   
16.
Covalent organic frameworks(COFs) are emerging photocatalysts for hydrogen evolution in water splitting in recent years. They offer a pre-designable platform to design tailor-made structures and chemically adjustable functionality in terms of photocatalysis. In this review, we summarize the recent striking progress of COF-based photocatalysts in design and synthesis. Firstly, different approaches to functionalizing building blocks, diversifying linkages, extending π-conjugation and establishing D-A conjugation are illustrated for enhancing photocatalytic activity. Next, post-modification of backbones and pores is detailed for emphasizing the synergistic catalytic uniqueness of COFs. Besides, the strategy of preparing COF-related composites with various semiconductors is outlined for optimizing the electronic properties. Finally, we conclude with the current challenges and promising opportunities for the exploration of new COF-based photocatalysts.  相似文献   
17.
单碱基错配的识别和稳定性差异在核酸多态性研究中至关重要。在同一电化学传感器平台上,采用电化学发光(ECL)和电化学阻抗(EIS)2种技术,协同研究DNA链中不同类型和不同位点的单碱基错配识别和稳定性差异。电极表面具有茎环构象的探针DNA与完全互补DNA、不同类型或不同位点单碱基错配DNA杂交前后的ECL和EIS信号强度变化有显著差异。信号强度变化可揭示单碱基错配识别的稳定性。结果表明,DNA链中心位点的C-A单碱基错配稳定性低于链两端的,靠近键合电极表面双链链端的C-A单碱基错配稳定性低于非键合电极表面双链链端的,同一中心位点C-X碱基对的稳定性顺序为C-G?C-T>C-A≥C-C。研究结果可为核酸多态性研究提供参考。  相似文献   
18.
As the application of electrocatalyst continues to expand, envisaging the hidden mechanisms occurring at various length scale affecting the catalytic efficiency became important. To enhance the stability of electrocatalyst and reduce the cost, it is of paramount importance to reveal the active site's dynamics (using in situ techniques for getting the real-time information) which directly affect the reactions such as oxygen evolution reaction, hydrogen evolution reaction, and so on. Since such reactions are crucial for many engineering and scientific applications, in situ characterization techniques are required, which could capture such reactions happening at a different length and time scale. This article analyzes the recent progress made in the field of electrocatalyst's characterization using in situ neutron techniques. The article also paves the future path and has delineated the future challenges involved in multiscale correlative techniques (e.g., neutron techniques in the combination of synchrotron or microscopic techniques) used for getting the multiscale (atomic to micrometer range) mechanistic information about the electrocatalyst's working and degradation.  相似文献   
19.
Dong-Yang Liu 《中国物理 B》2022,31(12):128104-128104
Regulation of oxygen on properties of moderately boron-doped diamond films is fully investigated. Results show that, with adding a small amount of oxygen (oxygen-to-carbon ratio < 5.0%), the crystal quality of diamond is improved, and a suppression effect of residual nitrogen is observed. With increasing ratio of O/C from 2.5% to 20.0%, the hole concentration is firstly increased then reduced. This change of hole concentration is also explained. Moreover, the results of Hall effect measurement with temperatures from 300 K to 825 K show that, with adding a small amount of oxygen, boron and oxygen complex structures (especially B3O and B4O) are formed and exhibit as shallow donor in diamond, which results in increase of donor concentration. With further increase of ratio of O/C, the inhibitory behaviors of oxygen on boron leads to decrease of acceptor concentration (the optical emission spectroscopy has shown that it is decreased with ratio of O/C more than 10.0%). This work demonstrates that oxygen-doping induced increasement of the crystalline and surface quality could be restored by the co-doping with oxygen. The technique could achieve boron-doped diamond films with both high quality and acceptable hole concentration, which is applicable to electronic level of usage.  相似文献   
20.
Zeolites remain one of the most important classes of industrial catalysts used today, and with the urgent drive for the transition from petrochemical to renewable feedstocks, there is a renewed interest in developing new types of zeolite. Recent synthetic advances in the field have included the development of the assembly-disassembly-organisation-reassembly (ADOR) method. In this short review, we will discuss how solid-state NMR experiments can be used to probe the mechanism of the process by characterising the structure of the intermediates and products, show how 17O NMR spectroscopy can be used to probe the reactivity of ADORable zeolites and explain how this, in turn, can lead to fundamental questions of how zeolites behave in the presence of liquid water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号